

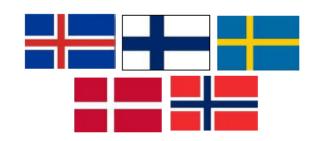
VALO (Value from Nordic Health Data) Pilot project

Presentation on E-sundhedsobservatoriet

Jesper Eriksen, Head of Data Analytics, Healthcare Nordic, IQVIA

Agenda:

- 1. VALO (Value from Nordic Health Data) Overview
- 2. VALO Pilot project Operations
- 3. OMOP delivery
- 4. VALO Research Retrospective observational multicentre study benchmarking care quality for patients with metastatic NSCLC in the Nordic countries



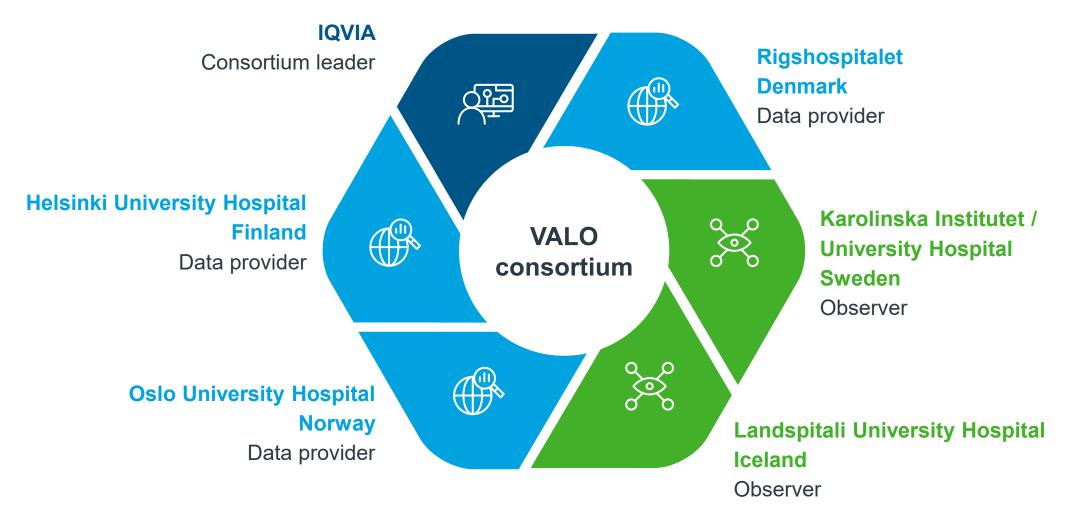
The VALO-project - Value from Nordic Health Data

OBJECTIVES OF OVERALL NORDIC PROJECT

- Strengthen Nordic cooperation and the secondary use of health data in research, development and innovation
- 2. Jointly prepare for the EHDS legislation (European Health Data Space) by starting to implement changes and reforms and sharing best practices
- 3. Test in practice and demonstrate the effectiveness of cross-border Nordic cooperation in the use of health data
- to achieve and maintain Nordic leadership in the secondary use of health data

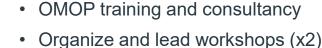
Link to more information: https://www.sitra.fi/en/projects/value-from-nordic-health-data-valo/#what-is-it-about

The VALO-pilot



VALO Pilot Project - Operations

VALO consortium members


These five university hospitals are togehter the new **Nordic University Hospital Alliance** (NUHA)

Consortium and responsibilities

Data and study partners

- Members of Consortium
- One primary contact and lead investigator per partner
- Protocol development reviews
- Data provider provide support for quality checks and data profile
- Resources to prepare data in OMOP format, initiate and run analytical packages on their OMOP database
- Share insights and learnings for
- Study and final report review
- One data partner Principal Investigator

 Fit-for-purpose feasibility, protocol development, SAP development

Consortium leader and deliverables -

- Analytic package
- Study analysis and study report
- Final report with learnings and recommendations

- Observers in consortium
- Participate in workshops to learn and share
- OMOP readiness assessment
- Share insights and learnings
- Final report review

Project deliverables

OMOP Data Feasibility

- Database quality confirmation
- Variable existence

2

Study protocol

- Aim & research objectives
- Relevance for Nordic region
- Data partners research method description, variables, data sources, study size
- OMOP tech & stats analysis plan

3

Process & Experience

- Consortium meetings ad hoc
- Learning and recommendations for distributed use of health data in the Nordics (Risks, Issues, Mitigations)

Interim results and Final Study Reports

- Objectives, implementation, criteria and principles
- Key results
- Key observations and learnings
- Proposed measures and areas for improvement
- Technical OMOP scripts

2 Consortium Workshops

- Overview of OMOP processes, sharing considerations and experiences
- 1st: increase understanding on OMOP data research opportunities
- 2nd: review study results, DP feedback results, vision forward

Publication

- Results
 Summary
 article on VALO
 Sitra website
- Any further scientific publications can be prepared within academic collaborations

OMOP Delivery

OHDSI and **OMOP**

Global standard for RWE research

OHDSI

(Observational Health Data Sciences and Informatics)

- Collaborative Network: An open-science community dedicated to improving health by empowering observational research.
- Global Collaboration: Involves researchers and stakeholders from around the world working together to generate evidence from real-world data.
- Mission: To establish a network of observational health databases and develop tools and methodologies for largescale analytics.

ОМОР

(Observational Medical Outcomes Partnership)

- Common Data Model (CDM): Standardizes the structure and content of observational health data from diverse sources.
- Interoperability: Facilitates the integration and analysis of healthcare data across different systems and regions.
- Consistency: Ensures consistent data representation, enabling reliable and reproducible research.

OHDSI Collaborators

- 2,900 users
- 29 workgroups
- 46,900 posts on 5,700 topics

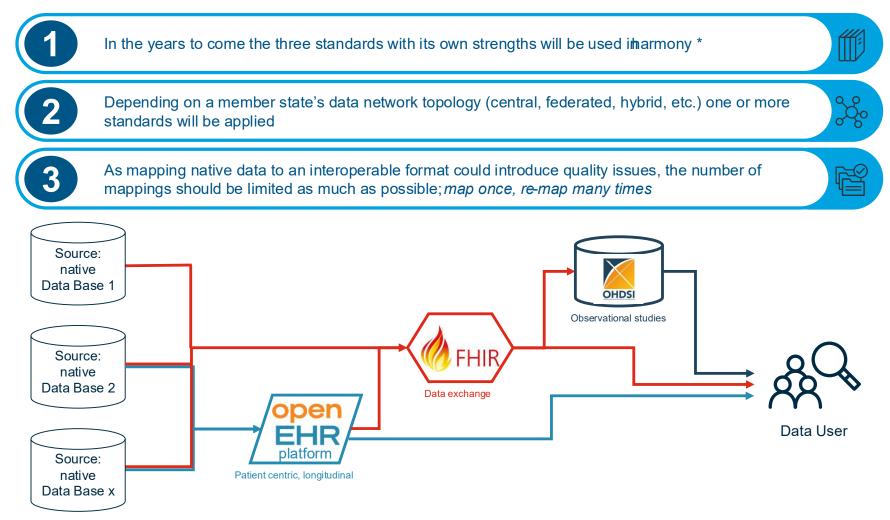
OHDSI Network

- >320+ databases
- 34 countries
- 2.7B patient records, 369M ex-US

Standardized means reliable, reproducible, faster and expanded data access

IQVIA / OMOP

Faster and more reliable studies across a series of datasets and data types


Reduced cost of ownership including understanding coding schemes, writing statistical programs across databases or developing software

Expanded data access via the OHDSI networks and remote multicenter database studies

Potential implementation of health data interoperability standards for secondary use, in multi EU data source settings

How the standards OpenEHR, FHIR and OMOP support the Data User needs

VALO Pilot project research: Benchmarking care quality for patients with metastatic NSCLC in the Nordic countries

Benchmarking care quality for patients with metastatic non-small cell lung cancer (NSCLC) in the Nordic countries

—a retrospective, observational, federated multisite study Objectives

1

To describe the baseline demographic and clinical characteristics of patients diagnosed with mNSCLC and patients receiving first-line treatment for metastatic disease with immune checkpoint inhibitors (ICI).

2

To analyze longitudinal treatment patterns of patients with mNSCLC:

- a) To describe the **treatment patterns** of mNSCLC patients receiving **ICI and chemotherapy**, either as monotherapy or as a combination.
- b) To evaluate the **duration of treatment** between sequential treatment types.
- c) To characterize the **number of cycles of treatment** received.
- d) To describe the proportion of patients receiving **radiotherapy** for mNSCLC following the index date.

3

To evaluate **clinical outcomes** of patients
with mNSCLC following
1st treatment line:

a) OS

Subgroup analyses:

For patients aged 75 years or older at initiation of ICI treatment.

Recruitment period:

01 Jan 2018 - 31 Dec 2023

Follow-up duration:

Potential minimum of 6 months

Exploratory Objectives

To analyze **HCRU and associated cost** among patients diagnosed with mNSCLC and receiving ICI as the first line of treatment.

5

To contextualize ICI and chemotherapy **treatment** patterns (Objective 2) according to clinical-guideline-defined lines of therapy.

